
A Computational Stack for Cross-Domain
Acceleration

Sean Kinzer Joon Kyung Kim Soroush Ghodrati Brahmendra Yatham
Alric Althoff∗ Divya Mahajan† Sorin Lerner Hadi Esmaeilzadeh

Alternative Computing Technologies (ACT) Lab
University of California San Diego ∗ Tortuga Logic † Microsoft

{skinzer,jkkim,soghodra,byatham}@eng.ucsd.edu alric@tortugalogic.com

divya.mahajan@microsoft.com lerner@eng.ucsd.edu hadi@eng.ucsd.edu

Abstract—Domain-specific accelerators obtain performance
benefits by restricting their algorithmic domain. These accel-
erators utilize specialized languages constrained to particular
hardware, thus trading off expressiveness for high performance.
The pendulum has swung from one hardware for all domains
(general-purpose processors) to one hardware per individual do-
main. The middle-ground on this spectrum–which provides a
unified computational stack across multiple, but not all, domains–
is an emerging and open research challenge. This paper sets out
to explore this region and its associated tradeoff between ex-
pressiveness and performance by defining a cross-domain stack,
dubbed PolyMath. This stack defines a high-level cross-domain
language (CDL), called PMLang, that in a modular and reusable
manner encapsulates mathematical properties to be expressive
across multiple domains–Robotics, Graph Analytics, Digital Sig-
nal Processing, Deep Learning, and Data Analytics. PMLang
is backed by a recursively-defined intermediate representation
allowing simultaneous access to all levels of operation granu-
larity, called srDFG. Accelerator-specific or domain-specific IRs
commonly capture operations in the granularity that best fits
a set of Domain-Specific Architectures (DSAs). In contrast, the
recursive nature of the srDFG enables simultaneous access to all
the granularities of computation for every operation, thus form-
ing an ideal bridge for converting to various DSA-specific IRs
across multiple domains. Our stack unlocks multi-acceleration
for end-to-end applications that cross the boundary of multiple
domains each comprising different data and compute patterns.

Evaluations show that by using PolyMath it is possible to
harness accelerators across the five domains to realize an average
speedup of 3.3× over a Xeon CPU along with 18.1× reduc-
tion in energy. In comparison to Jetson Xavier and Titan XP,
cross-domain acceleration offers 1.7× and 7.2× improvement
in performance-per-watt, respectively. We measure the cross-
domain expressiveness and performance tradeoff by comparing
each benchmark against its hand-optimized implementation to
achieve 83.9% and 76.8% of the optimal performance for single-
domain algorithms and end-to-end applications. For the two case
studies of end-to-end applications (comprising algorithms from
multiple domains), results show that accelerating all kernels of-
fers an additional 2.0× speedup over CPU, 6.1× improvement
in performance-per-watt over Titan Xp, and 2.8× speedup over
Jetson Xavier compared to only the one most effective single-
domain kernel being accelerated. Finally, we examine the utility
and expressiveness of PolyMath through a user study, which
shows, on average, PolyMath requires 1.9× less time to imple-
ment algorithms from two different domains with 2.5× fewer
lines of code relative to Python.

Index Terms—Accelerator design, Machine learning systems,
Algorithms/System Co-design, Domain Specific Language

Ex
pr

es
si

ve
ne

ss

Performance

Domain-Specific
Accelerators

PolyMath

General-Purpose
Processors

DeCo [7]
TABLA [14]

RoboX [12]

TVM [13]
Darwin [15]

Graphicionado [11]

…Ex
pr

es
si

ve
ne

ss

Performance

Domain
Robotics

DSP
Data Analytics

…

Po
ly
M
at
h

G
en

er
al

-P
ur

po
se

 P
ro

ce
ss

or
s

Open Research

Genomics

Graph Analytics

Deep Learning

BCP Acc [17] SAT Solving

Fig. 1: Emerging tradeoff: Expressiveness vs. Performance.

I. INTRODUCTION

End-to-end applications ranging from delivery drones [1]
to smart speakers [2] cross multiple domains. One such appli-
cation senses the environment, (1) pre-processes the sensory
data, feeds it to a (2) perception module that in turn invokes
a (3) decision making process to determine actions. Percep-
tion is currently reigned by Machine Learning (ML), which
has attracted significant attention, but applications are not just
ML. Sensory data processing relies on algorithms from Digital
Signal Processing (DSP) while Control Theory and Robotics
bring forth the final action that may also feed the perception
module. Even though these domains work in tandem to real-
ize an entire application, they are becoming isolated by the
current push towards Domain-Specific Accelerators (DSAs).
One the one hand, these accelerators tradeoff generality for
performance and energy efficiency by restricting programma-
bility to a single domain [3]. On the other hand, the traditional
general-purpose computational stack cannot meet the compu-
tational demands of emerging applications [4–6]. Although,
Domain-Specific Accelerators (DSA) bridge this performance
gap, but make implementation an arduous task of dealing with
isolated programming interfaces. Thus, expressiveness is be-
coming limited, making the composition of an end-to-end ap-
plication a major challenge for execution on accelerators. As a

{skinzer, jkkim, soghodra, byatham}@eng.ucsd.edu
alric@tortugalogic.com
divya.mahajan@microsoft.com
lerner@eng.ucsd.edu
hadi@eng.ucsd.edu

consequence, users seeking to create compute-intensive appli-
cations composed of algorithms from different domains must
choose between either using a lower-performance, general-
purpose processor or bear the burden of manually stitching
together various domain-specific accelerators.

This emerging challenge creates a new tradeoff between
performance and expressiveness, illustrated in Figure 1. On
one extreme, we have General-Purpose Processors that al-
low expressing all domains at the cost of performance and/or
efficiency [3]. On other extreme, are domain-specific accel-
erators [7–13] that can only support a single domain to be
executed on one particular specialized architecture, thus are
very performant. Even though certain DSAs offer computa-
tional stacks, composing an end-to-end application that crosses
the boundary of many domains requires intimate knowledge of
multiple different interfaces and various hardware accelerators
to obtain high performance. Recent efforts such as, Graphi-
cionado [14], RoboX [15], TVM [16], Tabla [17], aim to unify
high-level coding within a single domain, cross-domain stacks
for accelerators still remains an open challenge (Figure 1).

As Figure 1 illustrates, by addressing this challenge, Poly-
Math defines a new point in the Expressiveness vs. Perfor-
mance design space. The ingredients of our approach are:
1) Exploiting the mathematical similarities across domains to

design a modular and reusable language, PMLang, that
is expressive across Robotics, Graph Analytics, DSP, Data
Analytics, and Deep Learning. It offers one-to-one mapping
between code and mathematical formulation while retain-
ing modularity, thus making it familiar to both domain-
experts and software engineers. PMLang offers light-
weight type modifiers based on domain semantics to enable
accelerators to handle on-chip and off-chip data allocation,
storage, and transfer. PMLang is not an abstraction over
existing domain specific languages, rather it explores a
novel dimension of designing a unified, stand-alone lan-
guage across multiple domains. This unique dimension de-
fines a class of languages that we refer to as Cross Domain
Languages (CDLs). To enable cross-domain acceleration,
PMLang and its associated compilation stack takes an ini-
tial step to bridge CDLs with domain-specific architectures,
that are constrained to a single domain.

2) To preserve expressiveness and provide flexibility for com-
pilation to different accelerators, we devise an interme-
diate representation that is a recursively-defined Dataflow
Graph, providing simultaneous access to all levels of op-
eration granularity (srDFG). The compute granularity of
the kernels is not uniform across different accelerators, re-
quired for cross-domain settings. Thus, we define srDFG
recursively in that its nodes are also srDFGs. As such,
srDFG uniquely offers simultaneous access to various lev-
els of computation granularity within a single program,
thus enabling leveraging different accelerators. This capa-
bility enables cross-domain multi-acceleration–acceleration
of a cross-domain application on different accelerators. The
flexible, recursive nature of our IR shown in Figure 2,
whose edges preserve the type modifier metadata.

3) PolyMath uses a modular compilation framework that con-
veniently enables creation and application of pipelined
compilation passes on the srDFG. To convert srDFGs
to executable accelerator code, PolyMath offers a graph
lowering algorithm with a conversion strategy which uses
metadata embedded in the srDFG edges to flexibly trans-
late the graph nodes. The lowering algorithm applies trans-
formations which produce a new srDFG made up of com-
pute kernels at the same granularity of the target accelera-
tor. Once lowered, the metadata associated with the srDFG
edges is translated to the accelerator’s own IR for final
binary generation through its own scheduling and mapping
framework.

4) Last but not least, PolyMath will be the very first exten-
sible, modular, and open-source computation stack to en-
able the community to innovate and explore the impending
challenges of cross-domain acceleration at a time when
domain-specific compilation stacks, except for DNNs, are
elusive. We have made the entire codebase available in a
public repository (https://github.com/he-actlab/polymath).
Although there are many accelerators in the literature,
many of their compilation stacks are not available. By
making PolyMath open-source and extensible, the com-
munity can add other domains which align with the core
mathematical constructs in PMLang.

We show PolyMath’s balance of expressiveness and per-
formance by compiling twelve different algorithms across
robotics, graph analytics, digital signal processing, data ana-
lytics, and deep learning. These workloads achieve an overall
speedup of 3.3× over a Xeon CPU along with 18.1× reduction
in energy. In comparison to Titan Xp and Jetson Xavier GPUs,
cross-domain acceleration offers 7.2× and 1.7× in energy re-
duction. We next measure the tradeoff of cross-domain algo-
rithm expression and find that PolyMath can achieve 83.9%
of the performance of the same algorithms implemented in
their native stack’s language. We also study two end-to-end
applications that cross multiple domains. Accelerating all the
kernels offers an additional 2.0× speedup over CPU, 6.1×
additional improvement in energy requirements over Titan Xp,
and 2.8× speedup over Jetson Xavier vs when only one most
effective kernel was accelerated. The results show that when
only a part is accelerated, the slower non-accelerated kernels
dictates the overall improvement, whereas, when all the al-
gorithms in the application are accelerated Amdahl’s burden
reduces, and the improvement of all the domains is magni-
fied. To evaluate the usability and expressiveness of PMLang
relative to Python, we conduct a user study and found that
on average PMLang required 1.9× less time to implement
algorithms with 2.5× fewer lines of code. Finally, end-to-end
performance of Polymath is 76.8% of the performance of two
manually implemented end-to-end applications. Given the fact
that PolyMath offers greater ease of programming compared
to Python, the automation overhead of 23.1% (=100%-76.8%)
is a fair bargain.

https://github.com/he-actlab/polymath

+

+

-

+
+

++

sin

-

++

- -

+

//
+-+

+
+

-
/

+ +
- /

+
+

/
ln

+
+

+
/ - +

+

/ +

+

+

-

/

abs

Fig. 2: Visual representation of PolyMath’s srDFG.

II. PMLANG: MATHEMATICAL PROGRAMMING
INTERFACE

PMLang is designed to encapsulate the mathematical prop-
erties of these domains, as they are tied together by similar op-
erations on multi-dimensional data, include minimal control-
flow, and share use-cases such as cyber-physical systems. Con-
sider the following application in its entirety: An end-to-end
neuroscience application requires multiple domains to study
the impact of deep brain stimulation on movement disorders
and goes through the following steps: (1) convert raw elec-
trocorticographic (ECoG) brain signals to frequency domain
using fast Fourier transform (FFT); (2) apply logistic regres-
sion to classify these frequency domain signals into various
biomarkers; (3) based on the classification, use model predic-
tive control to send an optical stimulation back to the brain.
This application crosses three domains, DSP, Data Analytics,
and Control Theory in each iteration to generate deep brain
stimulation signals.

There are numerous domain specific architectures for each
of these algorithms/domains individually; however, using them
for this application would require writing each part of the
application in a different DSL, compiling them separately, and
manually joining their executables. Instead, PMLang allows
users to write their application as a single program, thus, elim-
inating the overhead of stitching together stacks to execute the
program across multiple domain specific architectures.

Keeping the properties of target domains in mind, PM-
Lang is designed to reduce the time to code a mathemati-
cal expression into a formula-based textual format, enabled
by language constructs for modularity and light-weight type
modifiers. Moreover for code organization and reduction in
implementation time, PMLang includes reusable execution
code blocks called components that perform operations on
flows of data. These components encapsulate a task comprised
of either other components and/or mathematical expressions
which use traditional, imperative syntax to facilitate familiarity
for experienced programmers. For modularity and reusability,
components have distinct boundaries and arguments which are
distinguished by type modifiers consisting of input, output,
state, and param; each of which is associated with how the
component will use the argument, shown in Table I. By using
type modifiers in component arguments to explicitly identify
data semantics PMLang binds operations to data being oper-
ated on for accelerators to take advantage of.

y
x

✓

Fig. 3: Visual of trajectory tracking for wheeled robot.

The remainder of the section will delve into details of PM-
Lang constructs through an example. For brevity, we show the
PMLang program for Model Predictive Control (MPC) from
Control Theory used for Robotics. MPC attempts to solve a
constrained optimization problem over a finite sequence of
inputs. MPC can also be used for the aforementioned brain
stimulation application. We provide MPC in the context of
a mobile two-wheeled robot performing trajectory tracking,
shown in Figure 3. Here, the sensors send the current state of
the robot as inputs to a model that predicts the next location,
then optimizes a sequence of control signals for moving the
robot to the predicted location. The program finds the optimal
sequence of control signals, ctrl_mdl, over a finite period of
time to match a reference trajectory, pos_ref, that specifies
the position and orientation of the robot. At each point in time,
the actual position and orientation of the robot is input to the
algorithm, which optimizes the ctrl_mdl and sends the next
control signal, ctrl_sgnl, back to the robot. This process
is summed up in the following steps:

Input: pos → the (x,y,θ) orientation of the robot.
Output: ctrl_sgnl→ (ν, ω) control consisting the velocity
and angular velocity to be sent to the robot.
State: u → (v, ω) linear and angular velocities across a pre-
determined time horizon h.
Step 1: Make a prediction Using input pos and cost matrices
P and H, predict the position and angle of the robot across
horizon h.
Step 2: Compute the gradient of the objective function
Calculate the error on the predicted position and orientation,
pos_pred, using pre-computed gradient coefficient matrices
HQ_g and R_g.
Step 3: Update the control model and send the output
signal Using gradient, g, update the control model, and send
the output control signal, ctrl_sgnl.

A. Components

Components form the building blocks of PMLang, and are
used to delineate different parts of the program into mul-
tiple levels of execution. To delineate the access semantics
for each argument of the components, PMLang uses type
modifiers ((input), output, state, param). Using type
modifiers relieves programmers from concern about the un-
derlying accelerator-specific mechanisms for data exchange
between different components. An input argument is used
to feed data into the component, and is read-only; an output
argument is used to return data from a component, and can
only be written to; a state argument can be read or written

1 predict_trajectory(input float pos[a],
2 input float ctrl_mdl[b],
3 param float P[c][a],
4 param float H[c][b],
5 output float pred[c]){
6 index i[0:a-1], j[0:b-1], k[0:c-1];
7 pred[k] = sum[i](P[k][i]*pos[i]);
8 pred[k] = pred[k] + sum[j](H[k][j]*ctrl_mdl[j]);
9 }

10 update_ctrl_model(input float ctrl_prev[b],
11 input float g[b],
12 output float ctrl_mdl[b],
13 output float ctrl_sgnl[s],
14 param int h){
15 index i[0:b-2], j[0:s-1];
16 ctrl_sgnl[j] = ctrl_mdl[h*j];
17 ctrl_mdl[(h-1)*j] = 0;
18 ctrl_mdl[i] = ctrl_prev[(i+1)*h] - g[(i+1)*h];
19 }
20 mvmul(input float A[m][n],
21 input float B[n],
22 output float C[m]){
23 index i[0:n-1], j[0:m-1];
24 C[j] = sum[i](A[j][i]*B[i]);
25 }
26 compute_ctrl_grad(input float pos_pred[c],
27 input float ctrl_mdl[b],
28 input float pos_ref[c],
29 param float HQ_g[b][c], // Input Cost Gradient
30 param float R_g[b][b], // Cost Inverse Hessian
31 output float g[b]){
32 index i[0:b-1], j[0:c-1];
33 float P_g[b], H_g[b];
34 err[j] = pos_ref[j] - pos_pred[j];
35 mvmul(HQ_g, err, P_g);
36 mvmul(R_g, ctrl_mdl, H_g);
37 g[i] = P_g[i] + H_g[i];
38 }
39 main(input float pos[3],
40 state float ctrl_mdl[20],
41 param float pos_ref[30],
42 param float P[30][3],
43 param float HQ_g[20][30],
44 param float H[30][20],
45 param float R_g[20][20],
46 output float ctrl_sgnl[2]){
47 float pos_pred[30], g[20];
48 index i[0:9], j[0:1];
49 RBT: predict_trajectory(pos, ctrl_mdl, P, H, pos_pred);
50 RBT: compute_ctrl_grad(pos_pred,ctrl_mdl,pos_ref,HQ_g,R_g,g);
51 RBT: update_ctrl_model(ctrl_mdl, g, ctrl_mdl, ctrl_sgnl,10);
52 }

Fig. 4: MPC for MobileRobot trajectory tracking in PMLang.

to, and represents data that is part of the state of the com-
ponent, thus is preserved across invocations/iterations; and a
param argument is a constant that is used to parameterize
the component. These type modifiers describe whether or not
the data will be re-used (state), kept unchanged (param),
or used once and discarded (input/output). As an exam-
ple, line 1 shows that argument pos is an input to the
predict_trajectory component. As another example,
line 41 shows a state argument named ctrl_mdl which
indicates that ctrl_mdl is used, updated, shared across in-
vocations of main, which matches the MPC semantics of
optimizing the control model over a series of time steps. Type
modifiers also enable custom accelerators to place input
data such as pos in Read-only FIFO buffers to reduce data
communication overhead and hardware memory logic, or store
state data such as ctrl_mdl on-chip on the accelerator
for fast repeated data accesses. Using a single set of type
modifiers to describe data semantics across multiple domains
unifies program implementation for end-to-end applications.
This is exemplified in robotics and deep learning, where one
domain uses “model” and the other “weight” to describe the
same data semantics, both of which are described as state
data in PMLang.

In addition to being reusable, these components allow users
to conceive their program as a collection of sub-steps at
varying levels of granularity making it adaptable for compi-

lation to different accelerators. To instantiate a component,
the programmer specifies its name and arguments. An ex-
ample of component instantiation is shown in line 49-51
where predict_trajectory, compute_ctrl_grad,
and update_ctrl_model is instantiated. Each instantia-
tion creates a copy of the component, as if it were inlined.
This is in contrast to conventional languages that rely on a
function call stack which is sequential in nature. Instead, in-
lining enables the program to be mapped to our srDFG IR,
which preserves opportunities for parallelism based on data
flow dependencies.

B. Index Variables

PMLang is based on mathematical notations that do not use
for loops and instead use indices (e.g.,

∑n−1
i=0 Ai). To simplify

programming based on formulae, PMLang uses index vari-
ables to concisely specify operations performed over ranges
of multi-dimensional data without using explicit for loops. In
its most basic form, an index variable represents a range
of integers, specified by its lower and upper bounds. Line
48 shows two such index variable declarations: i and j.
This approach reveals the inherent parallelism in mathematical
formulae since operations expressed using this approach are
naturally vectorizable without performing any loop transfor-
mations. For example, below is a PMLang statement iterating
over all js, each of which can be performed in parallel.
index j[0:s-1];
err[j] = pos_ref[j] - pos_pred[j];

Strided indexing. To support strided/non-sequential indexing
(e.g., convolution), PolyMath also supports arithmetic opera-
tions on index variables as shown below.
ctrl_mdl[i] = ctrl_prev[(i+1)*h] - g[(i+1)*h];

Boolean conditional over indexing. Unlike a domain-specific
language such as TABLA [17] that focuses solely on data an-
alytics, PMLang allows Boolean conditionals to be applied
to indices, which provides support for other domains such
as graph analytics and robotics. For instance, the following
computes the sum of the non-diagonal parts of the matrix A:
index i[0:N-1], j[0:M-1];
res = sum[i][j: j != i](A[i][j]);

Support for Boolean conditionals and non-sequential index
variables flexibly incorporates common as well as specific-
to-domain characteristics of algorithms across robotics, graph
analytics, DSP, data analytics, and deep learning. These fea-
tures distinguish PMLang from DSLs which either use (1)
concise operations expressed through a fixed API (e.g., named
functions such as “dense” in TVM [16]), or (2) simply do
not support these construction since the specific target domain
does not require them (e.g., TABLA [17].)

C. Mathematical Operations

Index variables allow for a nearly one-to-one mapping be-
tween mathematical notation and PMLang code. PMLang
offers standard mathematical operators to be used with multi-
dimensional data, expressed in a single statement by using

index variables. PMLang’s syntax for math expression of

Cj =
n∑

i=0

Aj,i ×Bi is:

C[j] = sum[i](A[j][i]*B[i]);

Non-Linear operations. PMLang includes a set of built-in
functions to be used in math expressions commonly used
across the multiple target domains, including non-linear oper-
ations such as cosine/sine (DSP, robotics), gaussian (robotics,
DSP, data analytics), sigmoid/ReLU (deep learning, data ana-
lytics), etc. Including non-linear operations as part of PMLang
simplifies algorithm expression and allows PolyMath to lever-
age the performance benefits of non-linear compute units in
custom accelerators.
Reduction operations. PMLang is also equipped with built-in
group reduction operations such as sum, prod, max etc., to
calculate the summation (

∑
), product (Π), or maximum value

of a sequence of numbers. These group reductions operations
are converted to srDFG with two levels of granularity: (1)
the outer group DFG node that (2) encapsulates the scalar
inner operations (nodes). This multi-granular representation
enables the compiler to map the the outer encompassing node
to a dedicated unit if the accelerator harbors it. Otherwise, the
inner basic nodes are mapped to individual ALUs. This crucial
flexibility is a unique feature of PolyMath and enables it be
cross domain and target different accelerators.
Custom reduction operations. PMLang also supports custom
group reduction operations, as they are commonly used in
graph analytics and DSP algorithms. Custom reduction opera-
tions can be defined in PolyMath by specifying the arithmetic
for a given set of input arguments. Below is an example of
the definition of the min reduction function and using it to
find the minimum value for the matrix A:
reduction min(a,b) = a < b ? a : b;
res = min[i][j](A[i][j]);

D. Domain Annotations

PMLang uniquely targets multiple domains, each of which
is eventually accelerated with a Domain-Specific Architecture.
As such, PMLang offers a light-weight mechanism to specify
the target domain for only top-level component instantiations
without tying it to a specific accelerator. All of the code within
a component also inherits the same domain, which alleviates
the programmer from having to annotate all component in-
stances in their program. This is done by simply adding one
of the five keywords: RBT (Robotics), GA (Graph Analytics),
DSP (Digital Signal Processing), DA (Data Analytics), and DL
(Deep Learning), as demonstrated below:

RBT: predict_trajectory(pos, ctrl_mdl, P, H, pos_pred);

III. SIMULTANEOUS-RECURSIVE DATAFLOW GRAPH

Accelerator-specific or domain-specific IRs commonly cap-
ture operations in the granularity that best fits the target archi-
tecture. One of the major challenges that PolyMath faces is
targeting multiple domains each of whose accelerators operate
on different granularities of computation. Even within a single
domain, various architectures accept computation in different

TABLE I: A subset of PMLang’s keywords and definitions.

Language
Construct

Keyword Description

Component string name Takes input, produces output, and
reads/writes to state arguments

Domain RBT, GA, DSP, DA,
DL

Specifies a component’s target do-
main

input Flow of data, can be exclusively
read from within a component
scope

output Flow of data, can be exclusively
written to within a component
scope

Type
Modifiers

param Constant parameter used to pa-
rameterize a component

state Flow of data, can be written to
or read from within a component
scope

Index
Types

index Specifies ranges of operations
Types bin, int, float,

str, complex
Data types used to for variable dec-
larations.

granularities. To address this challenge, we designed srDFG,
an intermediate representation which is a recursively-defined
dataflow graph, and provides simultaneous access to each level
of recursion, srDFG. Our srDFG enables the compiler to
simultaneously access all the granularities of computation for
every component, thus forming the ideal bridge to convert to
various accelerator-specific IR. Furthermore, srDFG enable
multi-acceleration for end-to-end applications that cross the
boundary of multiple domains with different data and compute
patterns across Robotics, Graph Analytics, DSP, Data Analyt-
ics, and Deep Learning. Next, we describe the srDFG struc-
ture using Figure 5, a visual representation of the MobileRobot
algorithm described in Section II.
A. srDFG Definitions

An srDFG is defined as a pair, (N,E), of nodes N repre-
senting PMLang operations, and edges E representing input or
output operands. An srDFG node n ∈ N is a pair (name, srdfg)
of a string representing the name of an operation, and its lower-
granularity operations srDFG composition. Each numbered
box in Figure 5 represents the srdfg for different nodes at vary-
ing granularities within the MobileRobot algorithm. As shown
in 2 : both the the subtraction operation and the mvmul com-
ponent are nodes. An edge e ∈ E is a tuple of source src and
destination dst nodes, and the edge metadata md: (src,dst,md).
Edge metadata consists of the type, type modifier, and shape
of the operand associated with the edge. For math operations,
input and output edges represent operands and results, whereas
adjacent edges in component instantiations represent state, in-
put and output arguments. This is illustrated in 1 , where pos
is the input argument, ctrl_sgnl is the output argument,
and ctrl_mdl is the state argument that creates a cycle for
multiple iterations. Given a node n, we denote the name and
srdfg as n.name and n.srdfg, and similarly denote src,dst,md in
an edge e as e.src, e.dst, and e.md. Lastly, the domain annota-
tions previously described are translated to the srdfg.domain
attribute for each srdfg.
B. srDFG Semantics

As an example, the srDFG shown in 3 will begin op-
erations when the data in edges R_g and ctrl_mdl are

1

ctrl_sgnl

update_ctrl

predict_trajectory

compute_grad

g

pos_pred

pos

mvmul

-

pos_pred

pos_ref

ctrl_mdl

R_g

+
g

mvmul

err

HQ_g x

sum

R_g ctrl_mdl

+
+ + + +

+
+

sum operation

5

4

element-wise multiplication

R_g1,1 ctrl_mdl1

x

R_g1,2 ctrl_mdl1

x

R_gi,k ctrl_mdlk

x

2

3

main component compute_grad component

mvmul component

ctrl_mdl

+

Fig. 5: Overview of the srDFG MobileRobot algorithm including zoomed-in views of its multiple levels of recursion.

ready. Each srDFG is a statically defined graph representing
a single instantiation on its input values, with each component
instantiation or operation getting its own srDFG, which allows
for computing context sensitive information. As an example,
Figure 5 2 shows two unique nodes and pairs of input edges
for the mvmul component, and as a result each instantiation of
mvmul gets its own node and srDFG. The srDFG in 2 also
shows how edges propagate their metadata to the lower granu-
larity nodes, as the shapes of R_g and ctrl_mdl determine
the number of element-wise multiplication nodes in 4 . The
type modifier included in edge metadata can change depending
on its srDFG, as shown in 1 where the ctrl_mdl edge is
a reusable state, but is an input edge for 2 .
C. Enabling Different Accelerators

Custom accelerators support unique set of operations per-
formed on a variety of different typed and shaped inputs and
outputs. To ensure flexibility, each srDFG includes operations
as nodes, n, as well as the more fine-grained operations to
define the node, n.dfg. To illustrate this point, each srDFG
in Figure 5 represents a possible operation supported by an
accelerator. If 2 is supported by the target accelerator, the
srDFG can be transformed to consist only of the operations
represented by each node in 1 . If 2 is not supported but 3
is supported, then the operations in both 1 and 2 will be
selected for compilation. PolyMath’s base unit of lowering is
a node, and if the nodes in the srDFG cannot be lowered to
a specific hardware because of unsupported nodes, the com-
pilation fails for that accelerator.

Each of these accelerator operations is closely tied to the
types and shapes of its operands. The srDFG uses the edge
metadata to specify the operand information when perform-
ing compilation of a node to an acceleration operation. For
example, an accelerator might support the element-wise mul-
tiplication in 4 , but requires the number of elements being
multiplied to perform the operation. Each input edge to 3
includes the shape as part of its metadata, which allows for
compilation of 4 . Domain-specific accelerators differentiate
how data is stored by receiving this information from the
programmer on how the variables are used. For example, the
ctrl_mdl edge in 1 has the state type modifier which
causes the accelerator to store the data local to the component.

v_temp[V] = reduce[u: u == V][v](process(e_w[u][v], v_p[u]));
v_p[V] = apply(v_temp[V], v_p[V]);

process

e_w[u][v]

reduce

apply

v_temp[V]

v_p[u]

v_p[u] Read v_p Read edges
with u ==V

Read
v_temp[V]

reduce_opapply

Read
e_w[u][v]

process
edges with
source u

Write
v_temp[V]

Write
v_p[u]

(a)

(b) (c)

Fig. 6: Graph Analytics algorithm compilation starting from
(a) a PMLang program compiled to an (b) srDFG which is
lowered and converted to (b) Graphicionado[14] pipeline
block IR.

IV. COMPILATION FRAMEWORK

PolyMath performs compilation in three steps: (1) compila-
tion from PMLang to an srDFG; (2) lowering the srDFG to
the granularity of the different domains and converting it to the
accelerator’s IR; (3) invoking the accelerator’s provided com-
piler to generate the final binaries. Figure 6 illustrates these
phases for a PMLang graph analytics implementation which
is compiled to an srDFG, and then lowered and converted to
GRAPHICIONADO’s pipeline IR.

A. srDFG Generation

For each PMLang program, compilation forms an Abstract
Syntax Tree (AST) using syntax analysis. The program AST is
then traversed and a symbol table S is created, storing informa-
tion contained in each component. The component information
consists of variable names and variable metadata md (e.g.,
edge type, type modifier, and shape). For each component,
a DFG is formed by stitching statements together using static
single assignment. Lower-level, srDFG operations are formed
for element-wise operations or group operations, which means
edges may represent both scalar and multi-dimensional values.

After completing AST traversal generating srDFGs from
PMLang statements, a single srDFG is generated starting
with the highest level component main. Previously, compo-
nent statements were skipped because all component srDFGs
were not created. When the main srdfg is traversed, a compo-

nent node nc is created using previously skipped component
statements and their argument type modifiers, preserving the
domain annotation as nc.dfg.domain attribute. Edges adjacent
to nc are added to srdfg by using the type modifiers for argu-
ments in the component signature of nc, where type modifiers
are (1) in/out edge sfor input/output, and (2) edges such that
e = (src,dst,md) where src = dst for state. The srDFG is
repeated for each component statement recursively, creating
nodes and edges to generate the lower levels of operation
granularity for each component, which inherit the top-level
domains.

B. Example srDFG Passes

PolyMath implements a modular framework and set of
APIs that enable custom, target-independent passes over the
IR. These passes take an srDFG as an input and produce
a transformed srDFG. This feature conveniently enables ap-
plying pipelines of passes on the same IR. Also, traditional
passes such as constant propagation, constant folding, etc. are
supported via this PolyMath pass infrastructure. We cover one
such compiler pass below.
Algebraic combination. Transformation passes in PolyMath
benefit from simultaneous access to all levels of operation
granularity for a program. This bolsters traditional compiler
passes such as algebraic simplification that are typically lim-
ited by single granularity IRs which hide opportunities for
simplification. In contrast, a PolyMath pass can identify hid-
den algebraic simplifications which span multiple levels of
granularity which would remain obscured in other flat IRs.
As an example, if an srDFG with a top-level matrix-vector
multiplication is added to the output of another matrix-vector
operation contained in another node’s subgraph, the matrix
vector operations can be fused together by concatenating their
inputs. This transformation opportunity remains unidentified
in flat IRs, but PolyMath uniquely reveals these transforma-
tion prospects by preserving a program’s multi-granularity in
the srDFG and supporting transformations crossing granular
boundaries.

C. Compilation from srDFG to Accelerator IR

Algorithm 1: srDFG Lowering Algorithm
function Lower(srdfg, Om)

let (N,E) = srdfg.subDfg
let Ot = Om[srdfg.domain] for each n ∈ N do

if n.name /∈ Ot then
let subDfg =Lower(n,Om)
srdfg← srdfg[n 7−→ subDfg]

end
return srdfg

Compiling a srDFG to a domain-specific architecture con-
sists of (1) lowering srDFG operations supported by the target
accelerator (Algorithm 1) and (2) forming valid accelerator
IR by translating and combining each srDFG node (Algo-
rithm 2). Algorithm 1 is a function Lower which takes as
input a dataflow graph srdfg which is a pair (N,E) of nodes

Algorithm 2: Compilation Algorithm
function CompileProgram(srdfg, AccSpec)

let πd ← ∅ for d ∈ Domains
let (N,E) = srdfg
for each n ∈ N do

let (+d, md) = AccSpec[n.domain]
let t = md[n.name]
πd = πd + t(srdfg, n)
for each in edge ∈ n do

if (n.domain 6= in edge.src.domain) then
πd = πd + tload(in edge, n)

end
for each out edge ∈ n do

if (n.domain 6= out edge.dst.domain) then
πd = πd + tstore(n, out edge)

end
end
return πd1, . . . , πdn

N and edges E defined in Section III-A. PolyMath lowers
srDFG operations to different domains with accelerator tar-
gets that support different granularity operations. Lower uses
a map, Om, with domain names as keys, and lists of domain-
specific accelerator operation names, Ot, as values to lower
srDFG nodes to the correct granularity.

The algorithm consists of first using the srdfg.domain at-
tribute as a key to determine the correct granularity of opera-
tions for lowering, storing the set of supported operations in
Ot. For each node n, if n.name is not included in Ot, n.srdfg
inherits the srdfg domain, and lowers n in srdfg by replac-
ing it with a srDFG comprised of only supported operations.
Replacing n in the srdfg consists of substituting src or dst
in adjacent edges (src,dst,md) with a node in the subDfg if
src = n or dst = n. Once each n ∈ N has been replaced
with supported operations based on Ot. By preserving different
levels of granularity in the srDFG, the same srDFG is capable
of generating dfg’s with operations supported by a variety of
custom accelerators. For instance, the hierarchy of ROBOX
begins at the System level, followed by finer grained Task
computations all the way down to varying operation granular-
ities in it’s macro dataflow graph, such as Vector, Scalar,
and Group operations.

Once a srdfg has been lowered, it is compiled to an IR
suitable for the accelerator using Algorithm 2. Accelerator IR
for a domain d, denoted with πd, is comprised of accelerator IR
fragments, each of which is a basic operator and its arguments.
To generate each πd for the different targets, Algorithm 2 takes
as input a lowered srDFG produced by Algorithm 1, and
accelerator specifications for the targets corresponding to each
domain. Acceleration specifications for each domain are stored
in AccSpec, and define how srDFG nodes are translated and
merged to form accelerator IR. A specification for domain d
is a pair (md, +d) where:
• md is a map from operator names to a translation func-

tion for that operator. The translation functions, t, works
as follows: given a srdfg and a node n, t(srdfg,n) returns
the accelerator IR fragment πd representing the accelerator
operation for n.

• +d is an operator that combines an accelerator IR πd and
an accelerator IR fragment produced by td.

Having defined the necessary variables, we can describe
Algorithm 2. The algorithm extracts the nodes and edges in
the srDFG, then applies a translation function to each node,
creating an accelerator IR fragment. Each IR fragment for
each of the program’s domains is separately accumulated into
complete representations of an accelerator program IR, and
are returned by the algorithm.

The most complicated part of the compilation are the trans-
lation functions, t. The translation function does two things:
(1) identify the correct accelerator IR operation, and (2) assign
the correct arguments for that operator. Assigning the correct
arguments uses these steps:
1) Convert types to the equivalent accelerator type
2) Use edges with input type modifier as input arguments
3) Use edges with output type modifier as output arguments
4) Initialize IR variables for edges with the state type modifier
5) Add constants for arguments with param type modifier
If the accelerator IR fragment requires the shape of operation
arguments, it is also included as part of the arguments to the
operator or declaration operation. To ensure data is transferred
between domain boundaries, load and store IR fragments are
created when there are sources and destinations with different
domains than a node. As a final step, accelerator provided
compilers are used to create binaries from the generated IR.
Compilation flexibility. The combination of Algorithm 2 and
1 enables compilation to different types of domain-specific
accelerator because of two key properties. First, simultaneous
access to each level of srDFG recursion allows supported
accelerator operations to be translated. Unsupported srDFG
nodes on the particular accelerator are refined and transformed
to the appropriate level of granularity through recursion which
enables identification of the accelerator-supported operations.
Second, the metadata stored in the srDFG allows the IR gen-
eration to be parameterized based on the target accelerator. As
a result, users can create different accelerator specifications for
different accelerators and these same algorithms will do the
appropriate mapping. Each algorithm can be instantiated for
a number of different mappings without changes to the high-
level algorithm.

V. EVALUATION

Table II illustrates the difference between conventional
general-purpose stacks, domain-specific stacks in the litera-
ture, and PolyMath. As shown, PolyMath represent a middle
ground between domain-specificity and generality, enabling
cross-domain multi-acceleration.
A. Experimental Setup

1) Algorithms and Datasets.: Table III shows workloads
from Robotics, Graph Analytics, DSP, Data Analytics, and
Deep Learning domains and the lines of code (LOC) for
the PMLang implementation. Table IV shows a break down
of end-to-end application domains, algorithms, configurations,
and PMLang LOC.
Single domain workloads. In Robotics domain, we have two
benchmarks, MobileRobot [21] and Hexacopter [22]. Sec-
tion II discusses the two-wheeled MobileRobot in detail. Hex-

TABLE II: A comparison of computational stacks.

Domain G
en

er
al

-P
ur

po
se

P
ro

ce
ss

or
s

G
ra

ph
ic

io
na

do
[1

4]

D
ar

w
in

[1
8]

D
N

N
W

ea
ve

r
[1

9]

TV
M

[1
6]

TA
B

LA
[1

7]

R
ob

oX
[1

5]

D
eC

O
[7

]

B
C

P
A

cc
[2

0]

Po
ly

M
at

h

Robotics 3 7 7 7 7 7 3 7 7 3

Graph
Analytics

3 3 7 7 7 7 7 7 7 3

DSP 3 7 7 7 7 7 7 3 7 3

Data
Analytics

3 7 7 7 3 3 7 7 7 3

Deep
Learning

3 7 7 3 3 7 7 7 7 3

Genomics 3 7 3 7 7 7 7 7 7 7

SAT Solvers 3 7 7 7 7 7 7 7 3 7

acopter is a six-rotor micro UAV that uses motion planning
and orientation control to determine trajectory. For both these
workloads the physical robot and task specification is ex-
pressed in PMLang. For Data Analytics we have Low Rank
Matrix Factorization (LRMF) and Kmeans clustering. LRMF
converts a large matrix into two smaller matrices, which if
taken product of, represent the original matrix. For LRMF we
use two Movielens [23] datasets. Kmeans clustering partitions
data into k-clusters. For one Kmeans workload cluster hand
written digits with mnist [24] dataset. The second benchmark
uses data from the UCI repository [25] to cluster households
with similar electricity consumption. In the Digital Signal
Processing domain we have four benchmarks, two for each
Fast Fourier Transform (FFT), and Discrete Cosine Transform
(DCT). The FFT implementation is a fine-grained butterfly
and bit-reversal to transform a signal to frequency domain.
The DCT algorithm applies a filter kernel to an input image
and is used for compression. For Deep Learning, we use two
popular convolutional neural networks, ResNet-18 [26] and
MobileNet [27] for object classification. For Graph Analyt-
ics, we implement and apply Breadth-First Search on two
graphs, one of Twitter users and followers [28] and another of
Wikipedia links [29].
End-to-end cross-domain applications. Table IV shows the
end-to-end applications for our case study, the different do-
mains they comprise of, and specification of each algo-
rithm. The brain stimulation application,BrainStimul, is
described in Section II. The stock market application, called
OptionPricing, predicts call option price in stock mar-
ket and uses two data analytics algorithms. This application
first performs sentiment analysis through logistic regression
on news articles to understand market signals and then Black-
Scholes to predict the price.

2) Optimized CPU and GPU implementations.: Table V
and VI shows the optimized CPU and GPU framework
their specifications. The robotics’s CPU implementation uses
ACADO Toolkit [30] to implement optimized, self-contained
C code and uses cuBLAS [31] libraries for GPUs. For graph
analytics, we used Intel GraphMat [32] for CPU implementa-
tions and Enterprise [33] for GPU. The DSP workloads use

TABLE III: Benchmarks and workloads used to evaluate
PolyMath.

Domain Benchmark Algorithm Config/Dataset PMLang
LOC

Mobile
Robot

Model
Predictive

Control

Trajectory Tracking,
Horizon = 1024

52

R
ob

ot
ic

s

Hexacopter Model
Predictive

Control

Altitude Control,
Horizon = 1024

197

Twitter
Followers

Breadth-First
Search

#Vertices=61.57M,
#Edges=1468.36M

14

Wikipedia
Links

Breadth-First
Search

#Vertices=3.56M,
#Edges=84.75M

14

G
ra

ph
A

na
ly

tic
s

LiveJournal Single
Source

Shortest Path

#Vertices=4.84M,
#Edges=68.99M

14

MovieL
(100k)

Low Rank
Matrix

Factorization

1682 movies, 943
users; 100000

ratings

43

MovieL
(20M)

Low Rank
Matrix

Factorization

40110 movies,
259137 users;
244096 ratings

43

D
at

a
A

na
ly

tic
s

DigitCluster K-Means
Clustering

784
features;120000

images;K=10

41

ElecUse K-Means
Clustering

4 features; 2075259
data points; K=12

41

FFT-8192 Fast-Fourier
Transform

1D FFT-real;
8192x1 input

12

FFT-16384 Fast-Fourier
Transform

1D FFT-real;
16834x1 input

12

DCT-1024 Discrete
Cosine

Transform

1024x1024 image;
8x8 kernel, stride=8

31

D
S

P

DCT-2048 Discrete
Cosine

Transform

2048x2048 image;
8x8 kernel, stride=8

31

ResNet-18 Deep Neural
Network

Batch Size = 1,
ImageNet

117

D
ee

p
Le

ar
ni

ng

MobileNet Deep Neural
Network

Batch Size = 1,
ImageNet

102

TABLE IV: Algorithmic composition of end-to-end applica-
tions.
Benchmark Algorithm Domain Config/Dataset LOC

Brain
Stimul

Fast-Fourier Transform
(FFT)

DSP 1D FFT, 4096
Input

12

Logistic Regression
(LR)

Data
Analytics

4096 features 8

Model Predictive
Control (MPC)

Robotics Horizon = 1024 64

Option
Pricing

Black-Scholes (BLKS) Data
Analytics

8192 options 10

Logistic Regression
(LR)

Data
Analytics

129549 words 8

TABLE V: Domains and accelerators used for evaluations.

Domain PolyMath Accelerator Baseline Framework
Robotics ROBOX (ASIC) ACADO/cuBLAS
Graph
Analytics

GRAPHICIONADO (ASIC) Intel GraphMat/Enterprise

Data
Analytics

HyperStreams(FPGA) /
TABLA (FPGA)

MLPack/OpenBlas/CUDA

DSP DECO (FPGA) FFTW3/cuFFT/NVIDIA-
DCT

Deep
Learning

TVM-VTA (FPGA) TVM/Tensorflow

TABLE VI: CPU, FPGA, and ASIC specifications.

CPU FPGA ASIC GPU
Chip Xeon E-

2176G
UltraScale
KCU1500

ROBOX/
GRAPHICIONADO

Titan Xp/
Jetson AGX

Xavier
Cores 6 - - 3,840/ 512
Memory/
BRAM

128GB 75MB 512KB/ 64MB 12 GB/32 GB

Power 80W 35W 3.4W/7W 250W/30W
Frequency 3.7

GHz
150MHz 1GHz/ 1GHz 1.5GHz/

1.3GHz
Logic
Tables

- 1,451 - -

Compute
Units

- 5,520 256/8 -

C subroutine libraries [34, 35] for CPU and Nvidia imple-
mentations [36, 37] for GPU. For data analytics, we use ml-
pack [38], a fast and flexible C++ ML library built on top
of OpenBLAS [39], NVBLAS [40], and Armadillo [41]. The
Deep Learning workloads are compiled using optimized Ten-
sorflow [42] for CPU and GPU. All of our experiments were
performed on an Intel Xeon E7, Titan Xp GPU, and low-power
Jetson Xavier AGX.

3) Domain-Specific accelerators.: Table V shows the ac-
celerator used for each domain. To evaluate each benchmark
on domain-specific accelerators, PolyMath was used to com-
pile programs to the target accelerator IR, and the target
accelerator’s compiler was used to generate executable bi-
naries. RoBoX’s [15] Macro DFG from srDFG as it of-
fers programmable ASIC for system, tasks, and penalties for
control algorithms optimized using MPC. We use GRAPHI-
CIONADO [14], an ASIC accelerator for graph analytics al-
gorithms expressed as vertex programs, as the target for
the Graph Analytics workloads. We compile FFT and DCT
srDFG representation to DECO [7], a DSP block based FPGA
accelerator, by translating to it’s DFG, which is then compiled
as executable binaries. For LRMF and kmeans we convert
srDFG to TABLA [43], an open source template-based FPGA
accelerator for machine learning, by compiling a srDFG to
a DFG.We use TVM-VTA [44], a programmable deep learn-
ing FPGA accelerator, as the target for Deep Learning work-
loads, as it is state-of-the-art and open-source. Each DSA
requires specific levels of operation granularity: single opera-
tion [7, 17], coarse DNN layers [44], and coarse time snap-
shots [15], enabled by each srDFG’s multi granularity, for
mapping of kernels to the accelerator.
Multi-acceleration. For BrainStimul, we compile parts to
DECO [7] (FFT-4096), TABLA [17] (Logistic Regression), and
RoBoX [15] accelerators. For OptionPricing, we execute
logistic regression based sentiment analysis on TABLA [17]
and Black Scholes on HyperStreams [45]. All accelerators are
cascaded as a single System On Chip (SOC), comprised of
memory and a host. A light-weight manager executes on the
host, ensuring data dependencies between different accelera-
tors and initiating DMA transfers between DRAM and local
accelerator memory. This setting is similar to prior work [46]
that also uses an array of micro-accelerators.

M
ob

ile
R

ob
ot

H
ex

ac
op

te
r

Tw
itt

er
-B

FS

W
ik

i-B
FS

Li
ve

Jo
ur

n-
S

S
P

M
ov

ie
L-

20
M

M
ov

ie
L-

10
0K

D
ig

itC
lu

st
er

E
le

cU
se

FF
T-

81
92

FF
T-

16
38

4

D
C

T-
10

24

D
C

T-
20

48

R
es

N
et

-1
8

M
ob

ile
N

et

G
eo

m
ea

n

0.0×
5.0×

10.0×
15.0×
20.0×
25.0×
30.0×

Im
pr

ov
em

en
t/C

P
U

1.
4×

9.
9×

3.
1× 4.

6×

14
.7
×

14
.7
× 17

.9
×

2.
1× 3.

7×

20
.7
×

18
.5
×

2.
0×

2.
1×

0.
2×

0.
2×

3.
8×

34
.5
×

23
9.

4×

65
.5
×

98
.9
×

34
.4
×

34
.4
×

41
.9
×

5.
0×

8.
7×

48
.6
×

43
.3
×

4.
6×

4.
9×

9.
9×

8.
2×

23
.8
×

Deep
LearningDSPData Analytics

Graph
AnalyticsRobotics

Runtime
Energy

Fig. 7: Runtime and Energy improvement of PolyMath over
CPU.

M
ob

ile
R

ob
ot

H
ex

ac
op

te
r

Tw
itt

er
-B

FS

W
ik

i-B
FS

Li
ve

Jo
ur

n-
S

S
P

M
ov

ie
L-

20
M

M
ov

ie
L-

10
0K

D
ig

itC
lu

st
er

E
le

cU
se

FF
T-

81
92

FF
T-

16
38

4

D
C

T-
10

24

D
C

T-
20

48

R
es

N
et

-1
8

M
ob

ile
N

et

G
eo

m
ea

n

0.0×
5.0×

10.0×
15.0×
20.0×
25.0×

Im
pr

ov
em

en
t/G

P
U

2.
4× 3.
2×

0.
5×

0.
5× 1.

5×

22
.7
×

6.
7×

2.
4×

1.
0×

13
.7
×

8.
8×

0.
0×

0.
0×

0.
1×

0.
1× 1.

1×

5.
3× 7.

1×

2.
2×

2.
1×

6.
2×

19
.4
×

5.
8×

2.
0×

0.
9×

11
.7
×

7.
6×

0.
0×

0.
0× 0.
6× 1.
0× 1.

9×

0.
1×

0.
1×

0.
2×

0.
3× 0.
7×

14
.6
× 17

.8
×

1.
7× 3.

1× 5.
5×

3.
5×

0.
0×

0.
0×

0.
0×

0.
0× 0.
4×

6.
0×

4.
4×

8.
7× 10

.6
×

25
.6
×

10
4.

5×

12
7.

4×

12
.3
×

22
.5
×

39
.0
×

25
.2
×

0.
2×

0.
1× 1.

9× 2.
4×

7.
7×

Deep
LearningDSPData Analytics

Graph
AnalyticsRobotics

Runtime (Jetson)
Performance-per-Watt (Jetson)
Runtime (Titan Xp)
Performance-per-Watt (Titan Xp)

Fig. 8: Runtime and Performance-per-Watt improvement of
PolyMath over GPU.

B. Experimental Results

The goal of PolyMath is to facilitate the use of the wide
variety of custom accelerators across end-to-end cross domain
applications. It does so by abstracting away hardware level
details through a versatile, extensible, and a modular stack that
can maintains the required levels of kernel granularities best
suited for each design. In this section we compare domain-
specific accelerators executing PMLang code with optimized
CPU and GPU implementations to better understand the porta-
bility of PolyMath. We then perform case studies through
two end-to-end applications and observe that PolyMath allows
cross domain multi-acceleration.

1) Performance and Energy Comparisons: Single kernel
comparisons. Figure 7 and Figure 8 show the speedup of
PolyMath compiled programs listed in Table III to domain
specific accelerators over Xeon E-2176G CPU, Titan Xp GPU,
and Jetson Xavier AGX as the baseline, respectively. On av-
erage, PolyMath translated implementations outperform Xeon
E-2176G and Jetson Xavier by 3.3× and 1.2× in terms of run-
time and offer 7.2× and 1.7×more Performance-per-Watt over
Titan Xp and Jetson Xavier GPUs. Smaller benchmarks such
as MovieLens-100K and ElecUse are unable to fully utilize
Titan XP, thus cannot obtain higher benefits in comparison to
Jetson but incur higher PPW. The average still demonstrates an
increase in both performance and energy in the cross-domain
setting. PolyMath implementations also offer 18.1× more en-
ergy efficiency over CPUs, but due to many lower power ac-
celerator backends only offers 40% of the GPU performance.
This is especially true for discrete cosine transform and deep
learning benchmarks; DCT due to its high coarse granular ma-

trix multiplications for which DECO a programmable FPGA
accelerator is not as effective as Titan Xp and deep learning
models because our backend for CNNs is VTA that is designed
as a low-power accelerator but is also being compared to a
high-end GPU for uniformity. Note that PolyMath does not
contribute any overhead specifically for deep learning accel-
eration because it offers direct conversion of srDFG to the
TVM nodes.
Optimal performance comparison. The accelerators used for
execution of PolyMath implementations also offer custom
stacks that are built for their target architecture. We com-
pare PolyMath to implementations in their native stack, which
represent optimal executions to demonstrate the cross-domain
overhead of our stack to native implementations. Figure 9 com-
pares the performance of PolyMath implementations with the
optimal performance that can be reached by programs written
by experts for each of the accelerators. The figure shows that
PolyMath achieves 83.9% the optimal runtime.

M
ob

ile
R

ob
ot

H
ex

ac
op

te
r

Tw
itt

er
-B

FS

W
ik

i-B
FS

Li
ve

Jo
ur

n-
S

S
P

M
ov

ie
L-

20
M

M
ov

ie
L-

10
0K

D
ig

itC
lu

st
er

E
le

cU
se

FF
T-

81
92

FF
T-

16
38

4

D
C

T-
10

24

D
C

T-
20

48

R
es

N
et

-1
8

M
ob

ile
N

et

A
ve

ra
ge

0%

20%

40%

60%

80%

100%

%
O

pt
im

al
Pe

rfo
rm

an
ce

Deep
LearningDSPData Analytics

Graph
AnalyticsRobotics

Fig. 9: Percent of optimal runtime for PolyMath trans-
lated implementations compared to hand-tuned implemen-
tations.

The performance of PolyMath relative to optimal imple-
mentations is dependent on the domain and the algorithm be-
cause each stack differs in the level of data semantics that can
be complex to compile to from a more expressive language.
For instance, accelerators specializing in Deep Learning often
utilize three primary type modifiers for variables in neural
network graphs: input, output, and weights–each of which can
be directly mapped to type modifiers in PMLang, thus incur
zero overhead. In contrast, Robotics algorithms contain unique
data semantics, such as task penalties, constraints variables,
time varying references, etc., which do not differentiated with
PolyMath type modifiers, thus implementations do not reach
optimal performance. Accelerators such as DECO require spe-
cific topologies for their graph-based IR, i.e. balanced DFGs,
because they rely on stage-based computation, which results
in reduced execution time relative to PolyMath translations.
In the case of Data Analytics, we see a low percentage of
optimal performance for ElecUse, because the benchmark
is small, which makes any extra operations included in the
srDFG have a more significant impact on performance relative
to the optimal implementation. In contrast, DigitCluster uses
the same algorithm but on a larger dataset, thus can amor-
tize the overhead more effectively. It is important to note that
the optimal performance is reached by a specialized program

on each accelerator written by an expert, whereas PolyMath
offers support for multiple domains constituting end-to-end
applications that can be expressed as single comprehensive
program, coupled with srDFG to pave way for compilation
to multiple accelerators.

FFT LR MPC FFT+LR FFT+MPC LR+MPC FFT+LR+MPC
0.0£

1.0£

2.0£

3.0£

4.0£

E
nd

-to
-e

nd
Im

pr
ov

em
en

t/C
P

U

Runtime
Energy

2 Domains 3 DomainsSingle-Domain Acceleration

Cross-Domain Acceleration

(a) BrainStimul brain stimulation application

BLKS LR BLKS+LR
0.0£

1.0£

2.0£

3.0£

4.0£

E
nd

-to
-e

nd
Im

pr
ov

em
en

t/C
P

U

Runtime
Energy

Cross-Domain Acceleration
(2 Domains)Single-Domain Acceleration

(b) OptionPricing finance application

Fig. 10: Runtime and energy improvement over CPU of end-
to-end applications for different combinations of acceler-
ated domains.

2) End-to-End Application Case Study: PolyMath offers
means to express cross domain applications as a single pro-
gram which can be compiled to multiple accelerators pertain-
ing to each of these domains. Figure 10 shows the runtime
and energy improvement of the end to end applications in
comparison to CPU. Figure 11 illustrates the runtime and
performance-per-Watt improvement in comparison to Titan
Xp and Jetson. Figure 10a and Figure 11a shows these re-
sults for BrainStimul and Figure 10b and Figure 11b for
OptionPricing application. In these graphs we provide
entire application improvement for all possible acceleration
combinations, from one domain algorithm accelerated to cross-
domain where all algorithms are accelerated. Each end-to-
end result incorporates data communication overheads from
data transfer between hardware. Stand-alone kernel accelera-
tion, as shown in , can offer very high speedups. However,
when these kernels are incorporated within a more compre-
hensive application, those speedups do not manifest in the
entire application because the non-accelerated kernel becomes
a bottleneck. For instance, the gap between the highest benefit
obtained from the best single-domain acceleration and cross-

domain end-to-end acceleration, is 1.85× for BrainStimul
and 2.06× for OptionPricing (Figure 10). Every kernel
that is added for acceleration not only benefits itself from spe-
cialized execution but also reduces the Amdahl’s burden and
magnifies other accelerated component’s impact. The benefits
of individual kernel acceleration are present despite end-to-end
communication runtime overheads of 23.4% and 17.0% and
energy overheads of 21.8% and 12.4% for BrainStimul
and OptionPricing, respectively.

FFT LR MPC FFT+LR FFT+MPC LR+MPC FFT+LR+MPC
0.0×

2.0×

4.0×

6.0×

Im
pr

ov
em

en
t/G

P
U

1.0×

8.
4×

Single-Domain Acceleration 2 Domains 3 Domains
Cross-Domain Acceleration

Runtime (Titan Xp)
Performance-per-Watt (Titan Xp)
Runtime (Jetson)
Performance-per-Watt (Jetson)

(a) BrainStimul brain stimulation application

BLKS LR BLKS+LR
0.0×

2.0×

4.0×

6.0×
Im

pr
ov

em
en

t/G
P

U

1.0×

9.
2×

Single-Domain Acceleration
Cross-Domain Acceleration
(2 Domains)

Runtime (Titan Xp)
Performance-per-Watt (Titan Xp)
Runtime (Jetson)
Performance-per-Watt (Jetson)

(b) OptionPricing finance application

Fig. 11: Runtime and Performance-per-Watt improvement
over GPU for combinations of accelerated domains for end-
to-end applications.

Figure 11a and 11b show the BrainStimul and
OptionPricing results for both Titan Xp and Jetson.
Figure 11a shows that PolyMath offers 1.2× runtime
improvement over Titan Xp compared to 1.8× over Jetson.
In contrast, PolyMath improves performance-per-watt by
8.3× over Titan Xp compared to 2.8× for Jetson due to
its lower power consumption. As Figure 11b shows, the
OptionPricing benchmark underutilizes the Titan Xp,
only offering 1.5× and 9.2× improvement in performance
and performance-per-watt compared to 1.4× and 1.9×
over Jetson. This is caused by the difference in levels of
coarse parallelism in the algorithms. Overall, the PolyMath
implementation of OptionPricing still outperforms both
GPUs for both runtime and performance-per-watt.

Lastly, Figure 12 shows end-to-end Polymath implemen-
tations achieve 76.7% optimal performance for BrainStim
and 76.9% for OptionPricing compared to entirely man-
ual implementations of each application. Given the fact that
PolyMath offers greater ease of programming compared to
Python (Figure 13), the automation overhead of 23.1% is a
fair tradeoff.

FF
T

LR
(S

TI
M

)

M
P

C

FF
T+

LR
(S

TI
M

)

FF
T+

M
P

C

LR
(S

TI
M

)+
M

P
C

FF
T+

LR
(S

TI
M

)+
M

P
C

B
LK

S

LR
(P

R
C

)

B
LK

S
+L

R
(P

R
C

)

A
ve

ra
ge

0%

20%

40%

60%

80%

100%
%

O
pt

im
al

Pe
rfo

rm
an

ce

Brain Stimulation
Option
Pricing

Fig. 12: Percent of optimal performance for BrainStim
and OptionPricing compared to hand-tuned implementa-
tions.

Kmeans DCT Average
0.0×
0.5×
1.0×
1.5×
2.0×
2.5×
3.0×
3.5×
4.0×

LO
C

R
ed

uc
tio

n 3.
3×

1.
8×

2.
5×

(a) Lines of Code Reduction
Kmeans DCT Average

0.0×
0.4×
0.8×
1.2×
1.6×
2.0×
2.4×
2.8×

C
od

in
g

Ti
m

e
R

ed
uc

tio
n

2.
6×

1.
2×

1.
9×

(b) Coding Time Reduction

Fig. 13: Reduction in Lines of Code (LOC) and coding time
with PMLang over Python for Kmeans and DCT.

3) User Study: To determine the usability of PMLang, we
conducted a user study with 20 programmers who are either
professional software engineers or PhD students in computer
science. The goal of the user study is to measure the expres-
siveness of PMLang by comparing it to Python, an intuitive
programming language which is commonly used in three of
the focus domains of PolyMath: DSP, Data Analytics, and
Deep Learning. The study tasked each user in the study with
implementing either a DSP or Analytics algorithm in Python or
PMLang. The users were divided into four groups; Kmeans
in Python, Kmeans in PMLang, DCT in Python, and DCT
in PMLang. For fairness and ease in expression of tensor
algebraic operations, we allow the users to import Python mod-
ules such numpy [47]. Each participant in the user study has
varying levels of expertise (from beginner to proficient) in the
target domains, and is proficient in Python. Every participant
went through the following process:
1) Participants were introduced to PMLang with a short, six-

minute video which walked through the language and small
examples.

2) To avoid any algorithm knowledge bias, participants were
randomly assigned either the DSP or ML algorithm to im-
plement in either Python and PMLang.

3) To minimize variation in algorithm understanding, users
were not allowed to begin their first implementation be-
fore having read and confirmed their understanding of the
algorithm.

4) We timed participants during their implementations and
measured their Lines of Code (LOC) after completion.

Results. Figure 13 compares the LOC between Python and
PMLang as a ratio of Python LOC to PMLang LOC in (a),
and the implementation time of Python and PMLang as a ratio

of Python implementation time to PMLang implementation
time in (b). The results show that PMLang required 2.5×
fewer lines of code on average and 1.9× less implementation
time on average. The Kmeans implementation averaged 3.3×
fewer LOC, whereas for DCT the average reduction of LOC is
1.8×. In general, the Kmeans algorithm is more verbose than
DCT and on average required 47.6% more lines of Python
code than DCT. Because there were more lines of code in-
cluded in Kmeans, there was more opportunity to reduce multi-
line operations to a single PMLang statement, which explains
the difference in LOC reduction.

The greater complexity of Kmeans appears to have an ef-
fect in the speedup of implementation time as well, where
the average speedup for Kmeans was 2.6× and the average
speedup for DCT was 1.2×. Part of this speedup can be at-
tributed to typing more LOC in PMLang, but it is also a
result of being able to directly translate mathematical notation
to the equivalent PMLang statement. These results indicate
that the more complicated the mathematical program is, the
more the programmer will benefit from implementing the pro-
gram in PMLang. Further, PMLang is expressive enough for
programmers unfamiliar with the language to write algebraic
expressions more efficiently than they would write the same
expressions in a language they are familiar with, Python.

VI. RELATED WORK

DSLs for custom architectures. There are various domain-
specific languages designed to facilitate the use of hardware
accelerators. These languages are mostly designed for a single
domain [48–51] or like Spatial [52], they focus on conve-
niently expressing lower level hardware-centric information.
Another language, Halide [50], allows expression of image
processing pipelines and contains constructs for filter-based
algorithms. Lime [53] focuses on high-level synthesis from
Java, thereby enabling execution of Java programs on both
FPGAs and CPUs. Instead, PolyMath offers a Cross-Domain
Language (CDL) and compute stack to explore the emerging
tradeoff between expressiveness and performance while lever-
aging currently isolated, domain-specific accelerators.
Mathematical and scientific computing environments. There
are numerous scientific and numerical programming environ-
ments [54–57], and frameworks [47, 58]. PolyMath uniquely
provides a 1-to-1 mapping of mathematical expressions to its
statements and leverages the natural parallelism in formulas
without any explicit annotations for vectorization In contrast,
MATLAB [54], Julia [55], or R, require manual effort from the
user to identify the parallelism across different computations,
vectorize its code, and determine column/row arrangements for
matrix operations. Moreover, these languages do not delineate
between the semantics of data in their programs and do not
offer a multi-granular representation, as offered by PolyMath,
to enable usage of various domain-specific accelerators.
Intermediate Representations. A number of intermediate rep-
resentations [59, 60] provide abstractions to enable program
analysis using virtual resources. Both LLVM and JVM op-
erate at the granularity of a single CPU instruction, which

is highly inefficient for domain-specific architectures. Some
works [61] have adapted LLVM to guarantee independence
between parallel operation threads by using a dataflow graph
structure intended for heterogeneous platforms. A number of
other works [16, 62–66] focus on the domain of machine
learning and have implemented an end-to-end approach for
optimization on heterogeneous platforms after performing op-
timizations from a high-level language. These works supported
limited algorithm domains [16, 62–65], and rely on C/C++
or other general-purpose programming languages [61, 66],
requiring the programmer to express complex mathematical
expressions in unintuitive ways. MLIR [66] is a hierarchical,
high level IR, but is general-purpose and as such is on the end
of the expressiveness curve (Figure 1). Whereas PolyMath is
restricted by its mathematical language (PMLang) to a limited
set of domains, falling in the middle of the spectrum of expres-
siveness. Furthermore, MLIR does not have any compilation
stack to support variety of accelerators from different domains
as PolyMath does and is practically demonstrated in the eval-
uations. Tiramisu [67] introduces a scheduling language with
novel commands to explicitly manage the complexities that
arise when targeting multicores, GPUs, and distributed ma-
chines. Tiramisu offers an IR based on the polyhedral model to
allow fine-grained optimization. As such, Tiramisu can serve
as a potential backend for PolyMath that deals with the higher-
level complexity of expressing cross-domain application and
not low-level fine-grained optimization.
Acceleration frameworks and toolchains. TensorFlow [42] is
an end-to-end open source platform for expressing ML algo-
rithms in Python. Deep learning accelerators (e.g., TPU [13])
leverage Tensorflow. Similarly, a variety of deep learning
frameworks [19, 68, 69] allow users to run their DNNs on
FPGA based hardware designs. Full stack solutions such as
TABLA [17] and ROBOX [15] support classical supervised
machine learning and model predictive control in robotics,
respectively. Other toolchains [70–73] aim to simplify running
deep neural networks on hardware accelerators by performing
design space exploration to find the best configuration for their
particular design. These solutions, however, are bound to their
own custom architectures for particular platforms (FPGAs or
ASICs). In contrast, the srDFG offers a flexible hook that can
be translated to these toolchains and frameworks as well as to
future accelerator designs and platforms. The cross-domain
nature of PolyMath that supports Robotics, Graph Analytics,
DSP, Data Analytics and Deep learning sets it apart from these
domain-specific stacks.

VII. CONCLUSION

As domain-specific accelerators are becoming prevalent,
there is an emerging tradeoff between expressiveness and per-
formance. This paradigm–a pendulum swing from general-
purpose processing to the opposite direction–creates implicit
programming silos between different domain. This paper set
out to explore the region between these extremes and ex-
plore the new expressiveness-performance tradeoff. To that
end, we defined a cross-domain computational stack, Poly-

Math, that bridges the expressiveness gap between multiple
domains, Robotics, Graph Analytics, DSP, Deep Learning, and
Data Analytics. The results from user study and performance
evaluations showed that PolyMath strikes an effective balance
between expressiveness and performance while enabling cross-
domain multi-acceleration. It is time to look beyond the timely,
yet temporary, success of domain-specific accelerators and de-
vise a future that enables end-to-end applications. The current
approach towards acceleration excludes significant opportu-
nities by restricting the domain. To harness these untapped
opportunities, a new paradigm needs to emerge that breaks
the boundaries of domains, but also preserves the benefits of
domain-specificity. PolyMath takes the initial step in breaking
this new ground.

VIII. ACKNOWLEDGMENTS

This work was in part supported by generous gifts from
Qualcomm, Google, Microsoft, Xilinx, Leidos as well as the
National Science Foundation (NSF) awards CNS#1703812,
ECCS#1609823, CCF#1553192, Air Force Office of Scientific
Research (AFOSR) Young Investigator Program (YIP) award
#FA9550-17-1-0274, National Institute of Health (NIH) award
#R01EB028350, and AirForce Research Laboratory (AFRL)
and Defense Advanced Research Project Agency (DARPA)
under agreement number #FA8650-20-2-7009 and #HR0011-
18-C-0020. The U.S. Government is authorized to reproduce
and distribute reprints for Governmental purposes not with-
standing any copyright notation thereon. The views and con-
clusions contained herein are those of the authors and should
not be interpreted as necessarily representing the official poli-
cies or endorsements, either expressed or implied of Qual-
comm, Google, Microsoft, Xilinx, NSF, AFSOR, NIH, AFRL,
DARPA or the U.S. Government.

REFERENCES

[1] S. Murray, W. Floyd-Jones, Y. Qi, G. Konidaris, and
D. J. Sorin. The microarchitecture of a real-time robot
motion planning accelerator. In 2016 49th Annual
IEEE/ACM International Symposium on Microarchitec-
ture (MICRO), pages 1–12, Oct 2016. doi: 10.1109/
MICRO.2016.7783748.

[2] Texas instruments c6000tm dsp, 2007. URL
http://www.ti.com/processors/digital-signal-processors/
c6000-floating-point-dsp/overview.html.

[3] Rehan Hameed, Wajahat Qadeer, Megan Wachs, Omid
Azizi, Alex Solomatnikov, Benjamin C. Lee, Stephen
Richardson, Christos Kozyrakis, and Mark Horowitz.
Understanding sources of inefficiency in general-purpose
chips. In ISCA, 2010.

[4] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki.
Toward dark silicon in servers. IEEE Micro, 31(4):6–15,
July–Aug. 2011.

[5] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant,
Karthikeyan Sankaralingam, and Doug Burger. Dark sil-
icon and the end of multicore scaling. In ISCA, 2011.

http://www.ti.com/processors/digital-signal-processors/c6000-floating-point-dsp/overview.html
http://www.ti.com/processors/digital-signal-processors/c6000-floating-point-dsp/overview.html

[6] Ganesh Venkatesh, Jack Sampson, Nathan Goulding, Sat-
urnino Garcia, Vladyslav Bryksin, Jose Lugo-Martinez,
Steven Swanson, and Michael Bedford Taylor. Conserva-
tion cores: Reducing the energy of mature computations.
In ASPLOS, 2010.

[7] A. K. Jain, X. Li, P. Singhai, D. L. Maskell, and S. A.
Fahmy. Deco: A dsp block based fpga accelerator over-
lay with low overhead interconnect. In 2016 IEEE 24th
Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM), pages 1–8, May
2016. doi: 10.1109/FCCM.2016.10.

[8] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. Eyeriss:
A Spatial Architecture for Energy-Efficient Dataflow for
Convolutional Neural Networks. In ISCA, 2016.

[9] Mohammad Samragh, Mojan Javaheripi, and Farinaz
Koushanfar. Encodeep: Realizing bit-flexible encoding
for deep neural networks. ACM Transactions on Embed-
ded Computing Systems (TECS), 19(6):1–29, 2020.

[10] Soroush Ghodrati, Hardik Sharma, Sean Kinzer, Amir
Yazdanbakhsh, Jongse Park, Nam Sung Kim, Doug
Burger, and Hadi Esmaeilzadeh. Mixed-signal charge-
domain acceleration of deep neural networks through
interleaved bit-partitioned arithmetic. In PACT, 2020.

[11] Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang
He, Jia Wang, Ling Li, Tianshi Chen, Zhiwei Xu,
Ninghui Sun, et al. Dadiannao: A machine-learning su-
percomputer. In MICRO, 2014.

[12] Soroush Ghodrati, Byung Hoon Ahn, Joon Kyung Kim,
Sean Kinzer, Brahmendra Yatham, Navateja Alla, Hardik
Sharma, Mohammad Alian, Eiman Ebrahimi, Nam Sung
Kim, Cliff Young, and Hadi Esmaeilzadeh. Planaria:
Dynamic architecture fission for spatial multi-tenant ac-
celeration of deep neural networks. In MICRO, October
2020.

[13] Norman P. Jouppi, Cliff Young, Nishant Patil, David Pat-
terson, Gaurav Agrawal, Raminder Bajwa, Sarah Bates,
Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle,
Pierre-luc Cantin, Clifford Chao, Chris Clark, Jeremy
Coriell, Mike Daley, Matt Dau, Jeffrey Dean, Ben Gelb,
Tara Vazir Ghaemmaghami, Rajendra Gottipati, William
Gulland, Robert Hagmann, Richard C. Ho, Doug Hog-
berg, John Hu, Robert Hundt, Dan Hurt, Julian Ibarz,
Aaron Jaffey, Alek Jaworski, Alexander Kaplan, Harshit
Khaitan, Andy Koch, Naveen Kumar, Steve Lacy, James
Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan
Liu, Kyle Lucke, Alan Lundin, Gordon MacKean, Adri-
ana Maggiore, Maire Mahony, Kieran Miller, Rahul
Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix,
Thomas Norrie, Mark Omernick, Narayana Penukonda,
Andy Phelps, Jonathan Ross, Amir Salek, Emad Sama-
diani, Chris Severn, Gregory Sizikov, Matthew Snel-
ham, Jed Souter, Dan Steinberg, Andy Swing, Mer-
cedes Tan, Gregory Thorson, Bo Tian, Horia Toma,
Erick Tuttle, Vijay Vasudevan, Richard Walter, Wal-
ter Wang, Eric Wilcox, and Doe Hyun Yoon. In-

datacenter performance analysis of a tensor processing
unit. CoRR, abs/1704.04760, 2017. URL http://arxiv.org/
abs/1704.04760.

[14] T. J. Ham, L. Wu, N. Sundaram, N. Satish, and
M. Martonosi. Graphicionado: A high-performance and
energy-efficient accelerator for graph analytics. In 2016
49th Annual IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO), pages 1–13, Oct 2016. doi:
10.1109/MICRO.2016.7783759.

[15] Jacob Sacks, Divya Mahajan, Richard C. Lawson, and
Hadi Esmaeilzadeh. Robox: An end-to-end solution
to accelerate autonomous control in robotics. In Pro-
ceedings of the 45th Annual International Symposium
on Computer Architecture, ISCA ’18, pages 479–490,
Piscataway, NJ, USA, 2018. IEEE Press. ISBN 978-
1-5386-5984-7. doi: 10.1109/ISCA.2018.00047. URL
https://doi.org/10.1109/ISCA.2018.00047.

[16] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin
Zheng, Eddie Yan, Haichen Shen, Meghan Cowan,
Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin,
and Arvind Krishnamurthy. TVM: An automated end-
to-end optimizing compiler for deep learning. In 13th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18), pages 578–594, Carlsbad,
CA, 2018. USENIX Association. ISBN 978-1-931971-
47-8. URL https://www.usenix.org/conference/osdi18/
presentation/chen.

[17] Divya Mahajan, Jongse Park, Emmanuel Amaro, Hardik
Sharma, Amir Yazdanbakhsh, Joon Kim, and Hadi Es-
maeilzadeh. TABLA: A unified template-based frame-
work for accelerating statistical machine learning. March
2016.

[18] Yatish Turakhia, Gill Bejerano, and William J. Dally.
Darwin: A genomics co-processor provides up to 15,000x
acceleration on long read assembly. In Proceedings
of the Twenty-Third International Conference on Archi-
tectural Support for Programming Languages and Op-
erating Systems, ASPLOS ’18, pages 199–213, New
York, NY, USA, 2018. ACM. ISBN 978-1-4503-4911-6.
doi: 10.1145/3173162.3173193. URL http://doi.acm.org/
10.1145/3173162.3173193.

[19] Hardik Sharma, Jongse Park, Divya Mahajan, Emmanuel
Amaro, Joon Kyung Kim, Chenkai Shao, Asit Mishra,
and Hadi Esmaeilzadeh. From high-level deep neural
models to FPGAs. October 2016.

[20] John D. Davis, Zhangxi Tan, Fang Yu, and Lintao
Zhang. A practical reconfigurable hardware accelerator
for boolean satisfiability solvers. In Proceedings of the
45th Annual Design Automation Conference, New York,
NY, USA, 2008. Association for Computing Machinery.
ISBN 9781605581156. doi: 10.1145/1391469.1391669.
URL https://doi.org/10.1145/1391469.1391669.

[21] Felipe Kuhne, Joao Manoel Gomes da Silva Jr, and Wal-
ter Fetter Lages. Mobile robot trajectory tracking using
model predictive control. In Latin American Robotics
Symposium, 2005.

http://arxiv.org/abs/1704.04760
http://arxiv.org/abs/1704.04760
https://doi.org/10.1109/ISCA.2018.00047
https://www.usenix.org/conference/osdi18/presentation/chen
https://www.usenix.org/conference/osdi18/presentation/chen
http://doi.acm.org/10.1145/3173162.3173193
http://doi.acm.org/10.1145/3173162.3173193
https://doi.org/10.1145/1391469.1391669

[22] M. Achtelik M. Kamel, K. Alexis and R. Siegwart. Fast
nonlinear model predictive control for multicopter atti-
tude tracking on so(3). In IEEE Multi-Conference on
Systems and Control, 2015.

[23] Grouplens. Movielens dataset. URL http://grouplens.org/
datasets/movielens/.

[24] Yann Lecun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. Gradient-based learning applied to document
recognition. In Proceedings of the IEEE, pages 2278–
2324, 1998.

[25] M. Lichman. UCI machine learning repository, 2013.
URL http://archive.ics.uci.edu/ml.

[26] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
CVPR, 2016.

[27] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications.
ArXiv, abs/1704.04861, 2017.

[28] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue
Moon. What is twitter, a social network or a news media?
In Proceedings of the 19th International Conference on
World Wide Web, WWW ’10, page 591–600, New York,
NY, USA, 2010. Association for Computing Machinery.
ISBN 9781605587998. doi: 10.1145/1772690.1772751.
URL https://doi.org/10.1145/1772690.1772751.

[29] Timothy A. Davis and Yifan Hu. The university of
florida sparse matrix collection. ACM Trans. Math.
Softw., 38(1), December 2011. ISSN 0098-3500.
doi: 10.1145/2049662.2049663. URL https://doi.org/
10.1145/2049662.2049663.

[30] Boris Houska, Hans Joachim Ferreau, and Moritz Diehl.
Acado toolkit—an open-source framework for automatic
control and dynamic optimization. Optimal Control
Applications and Methods, 32(3):298–312, 2011. doi:
10.1002/oca.939. URL https://onlinelibrary.wiley.com/
doi/abs/10.1002/oca.939.

[31] Nvidia. Dense linear algebra on gpus, . URL https://
developer.nvidia.com/cublas.

[32] Narayanan Sundaram, Nadathur Satish, Md Mostofa Ali
Patwary, Subramanya R. Dulloor, Michael J. An-
derson, Satya Gautam Vadlamudi, Dipankar Das,
and Pradeep Dubey. Graphmat: High performance
graph analytics made productive. Proc. VLDB En-
dow., 8(11):1214–1225, July 2015. ISSN 2150-8097.
doi: 10.14778/2809974.2809983. URL https://doi.org/
10.14778/2809974.2809983.

[33] H. Liu and H. H. Huang. Enterprise: breadth-first graph
traversal on gpus. In SC ’15: Proceedings of the Inter-
national Conference for High Performance Computing,
Networking, Storage and Analysis, pages 1–12, 2015.

[34] Matteo Frigo and Steven G. Johnson. The design and
implementation of FFTW3. Proceedings of the IEEE, 93
(2):216–231, 2005. Special issue on “Program Genera-
tion, Optimization, and Platform Adaptation”.

[35] Nvidia. Nvidia toolkit, . URL https://
developer.nvidia.com/cuda-toolkit.

[36] Nvidia. Nvidia cuda fast fourier transform library, . URL
https://developer.nvidia.com/cufft.

[37] Nvidia. Nvidia cuda sdk - image/video pro-
cessing and data compression, 2008. URL
https://www.nvidia.com/content/cudazone/cuda sdk/
Image Video Processing and Data Compression.html.

[38] Ryan R. Curtin, James R. Cline, Neil P. Slagle,
William B. March, P. Ram, Nishant A. Mehta, and
Alexander G. Gray. MLPACK: A scalable C++ machine
learning library. Journal of Machine Learning Research,
14:801–805, 2013.

[39] Zhang Xianyi, Wang Qian, and Zhang Yunquan. Model-
driven level 3 blas performance optimization on loongson
3a processor. In Proceedings of the 2012 IEEE 18th In-
ternational Conference on Parallel and Distributed Sys-
tems, ICPADS ’12, pages 684–691, Washington, DC,
USA, 2012. IEEE Computer Society. ISBN 978-0-
7695-4903-3. doi: 10.1109/ICPADS.2012.97. URL
http://dx.doi.org/10.1109/ICPADS.2012.97.

[40] Nvidia. Nvidia nvblas library., . URL http://
docs.nvidia.com/cuda/nvblas.

[41] Conrad Sanderson and Ryan Curtin. Armadillo: a
template-based c++ library for linear algebra. In Journal
of Open Source Software, 2016.

[42] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene
Brevdo, Zhifeng Chen, Craig Citro, Greg Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Ian Goodfellow, Andrew Harp, Geoffrey Irv-
ing, Michael Isard, Yangqing Jia, Rafal Jozefowicz,
Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan
Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris
Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner,
Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent
Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol
Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke,
Yuan Yu, and Xiaoqiang Zheng. Tensorflow: Large-
scale machine learning on heterogeneous distributed sys-
tems, 2015. URL http://download.tensorflow.org/paper/
whitepaper2015.pdf.

[43] ACTLab. TABLA source code, 2017. http://www.act-
lab.org/artifacts/tabla/.

[44] Thierry Moreau, Tianqi Chen, Luis Vega, Jared Roesch,
Lianmin Zheng, Eddie Yan, Josh Fromm, Ziheng Jiang,
Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy.
A hardware-software blueprint for flexible deep learning
specialization. IEEE Micro, July 2019.

[45] G. W. Morris and M. Aubury. Design space exploration
of the european option benchmark using hyperstreams. In
2007 International Conference on Field Programmable
Logic and Applications, pages 5–10, 2007.

[46] N. Chandramoorthy, G. Tagliavini, K. Irick, A. Pullini,
S. Advani, S. A. Habsi, M. Cotter, J. Sampson,
V. Narayanan, and L. Benini. Exploring architectural
heterogeneity in intelligent vision systems. In 2015 IEEE

http://grouplens.org/datasets/movielens/
http://grouplens.org/datasets/movielens/
http://archive.ics.uci.edu/ml
https://doi.org/10.1145/1772690.1772751
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1145/2049662.2049663
https://onlinelibrary.wiley.com/doi/abs/10.1002/oca.939
https://onlinelibrary.wiley.com/doi/abs/10.1002/oca.939
https://developer.nvidia.com/cublas
https://developer.nvidia.com/cublas
https://doi.org/10.14778/2809974.2809983
https://doi.org/10.14778/2809974.2809983
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cufft
https://www.nvidia.com/content/cudazone/cuda_sdk/Image_Video_Processing_and_Data_Compression.html
https://www.nvidia.com/content/cudazone/cuda_sdk/Image_Video_Processing_and_Data_Compression.html
http://dx.doi.org/10.1109/ICPADS.2012.97
http://docs.nvidia.com/cuda/nvblas
http://docs.nvidia.com/cuda/nvblas
http://download.tensorflow.org/paper/whitepaper2015.pdf
http://download.tensorflow.org/paper/whitepaper2015.pdf
http://www.act-lab.org/artifacts/tabla/
http://www.act-lab.org/artifacts/tabla/

21st International Symposium on High Performance
Computer Architecture (HPCA), pages 1–12, 2015.

[47] Stéfan Van der Walt, S. Chris Colbert, and Gaël Varo-
quaux. The numpy array: a structure for efficient nu-
merical computation. CoRR, abs/1102.1523, 2011. URL
http://arxiv.org/abs/1102.1523.

[48] Marco Frigerio, Jonas Buchli, and Darwin G. Caldwell.
A domain specific language for kinematic models and
fast implementations of robot dynamics algorithms. In
International Workshop on Domain-Specific Languages
and Models for Robotic Systems, 2015.

[49] Mirko Bordignon, Kasper Stoy, and Ulrik Pagh Schultz.
Generalized programming of modular robots through
kinematic configurations. In International Conference on
Intelligent Robots and Systems, 2011.

[50] Jonathan Ragan-Kelley, Andrew Adams, Dillon Sharlet,
Connelly Barnes, Sylvain Paris, Marc Levoy, Saman
Amarasinghe, and Frédo Durand. Halide: Decoupling
algorithms from schedules for high-performance image
processing. Commun. ACM, 61(1):106–115, December
2017. ISSN 0001-0782. doi: 10.1145/3150211. URL
http://doi.acm.org/10.1145/3150211.

[51] Arvind K. Sujeeth, HyoukJoong Lee, Kevin J. Brown,
Hassan Chafi, Michael Wu, Anand R. Atreya, Kunle
Olukotun, Tiark Rompf, and Martin Odersky. Optiml:
An implicitly parallel domain-specific language for ma-
chine learning. In Proceedings of the 28th Interna-
tional Conference on International Conference on Ma-
chine Learning, ICML’11, pages 609–616, USA, 2011.
Omnipress. ISBN 978-1-4503-0619-5. URL http://
dl.acm.org/citation.cfm?id=3104482.3104559.

[52] David Koeplinger, Matthew Feldman, Raghu Prabhakar,
Yaqi Zhang, Stefan Hadjis, Ruben Fiszel, Tian Zhao,
Luigi Nardi, Ardavan Pedram, Christos Kozyrakis, and
Kunle Olukotun. Spatial: A language and compiler for
application accelerators. In Proceedings of the 39th
ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2018, pages 296–
311, New York, NY, USA, 2018. ACM. ISBN 978-
1-4503-5698-5. doi: 10.1145/3192366.3192379. URL
http://doi.acm.org/10.1145/3192366.3192379.

[53] Joshua Auerbach, David F. Bacon, Perry Cheng, and
Rodric Rabbah. Lime: A java-compatible and synthe-
sizable language for heterogeneous architectures. In
Proceedings of the ACM International Conference on
Object Oriented Programming Systems Languages and
Applications, OOPSLA ’10, pages 89–108, New York,
NY, USA, 2010. ACM. ISBN 978-1-4503-0203-6.
doi: 10.1145/1869459.1869469. URL http://doi.acm.org/
10.1145/1869459.1869469.

[54] MATLAB version 9.3.0.713579 (R2017b). The Math-
works, Inc., Natick, Massachusetts, 2017.

[55] Jeff Bezanson, Stefan Karpinski, Viral B. Shah, and Alan
Edelman. Julia: A fast dynamic language for technical
computing. CoRR, abs/1209.5145, 2012. URL http://
arxiv.org/abs/1209.5145.

[56] Guy L. Steele, Jr. Parallel programming and code se-
lection in fortress. In Proceedings of the Eleventh
ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, PPoPP ’06, pages 1–1, New
York, NY, USA, 2006. ACM. ISBN 1-59593-189-9.
doi: 10.1145/1122971.1122972. URL http://doi.acm.org/
10.1145/1122971.1122972.

[57] R Core Team. R: A Language and Environment for Statis-
tical Computing. R Foundation for Statistical Computing,
Vienna, Austria, 2017. URL https://www.R-project.org/.

[58] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin,
Alban Desmaison, Luca Antiga, and Adam Lerer. Auto-
matic differentiation in pytorch. 2017.

[59] Chris Lattner and Vikram Adve. LLVM: A compilation
framework for lifelong program analysis and transforma-
tion. In CGO, 2004.

[60] Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex
Buckley. The Java Virtual Machine Specification, Java
SE 8 Edition. Addison-Wesley Professional, 1st edition,
2014. ISBN 013390590X, 9780133905908.

[61] Maria Kotsifakou, Prakalp Srivastava, Matthew D. Sin-
clair, Rakesh Komuravelli, Vikram Adve, and Sarita
Adve. Hpvm: Heterogeneous parallel virtual machine.
In Proceedings of the 23rd ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Program-
ming, PPoPP ’18, pages 68–80, New York, NY, USA,
2018. ACM. ISBN 978-1-4503-4982-6. doi: 10.1145/
3178487.3178493. URL http://doi.acm.org/10.1145/
3178487.3178493.

[62] Thierry Moreau, Tianqi Chen, Ziheng Jiang, Luis Ceze,
Carlos Guestrin, and Arvind Krishnamurthy. VTA:
an open hardware-software stack for deep learning.
CoRR, abs/1807.04188, 2018. URL http://arxiv.org/abs/
1807.04188.

[63] Jared Roesch, Steven Lyubomirsky, Logan Weber, Josh
Pollock, Marisa Kirisame, Tianqi Chen, and Zachary
Tatlock. Relay: A new ir for machine learning frame-
works. In Proceedings of the 2Nd ACM SIGPLAN In-
ternational Workshop on Machine Learning and Pro-
gramming Languages, MAPL 2018, pages 58–68, New
York, NY, USA, 2018. ACM. ISBN 978-1-4503-5834-7.
doi: 10.1145/3211346.3211348. URL http://doi.acm.org/
10.1145/3211346.3211348.

[64] Nicolas Vasilache, Oleksandr Zinenko, Theodoros
Theodoridis, Priya Goyal, Zachary DeVito, William S.
Moses, Sven Verdoolaege, Andrew Adams, and Al-
bert Cohen. Tensor comprehensions: Framework-
agnostic high-performance machine learning abstrac-
tions. CoRR, abs/1802.04730, 2018. URL http://
arxiv.org/abs/1802.04730.

[65] Nadav Rotem, Jordan Fix, Saleem Abdulrasool, Sum-
mer Deng, Roman Dzhabarov, James Hegeman, Roman
Levenstein, Bert Maher, Nadathur Satish, Jakob Ole-
sen, Jongsoo Park, Artem Rakhov, and Misha Smelyan-
skiy. Glow: Graph lowering compiler techniques for

http://arxiv.org/abs/1102.1523
http://doi.acm.org/10.1145/3150211
http://dl.acm.org/citation.cfm?id=3104482.3104559
http://dl.acm.org/citation.cfm?id=3104482.3104559
http://doi.acm.org/10.1145/3192366.3192379
http://doi.acm.org/10.1145/1869459.1869469
http://doi.acm.org/10.1145/1869459.1869469
http://arxiv.org/abs/1209.5145
http://arxiv.org/abs/1209.5145
http://doi.acm.org/10.1145/1122971.1122972
http://doi.acm.org/10.1145/1122971.1122972
https://www.R-project.org/
http://doi.acm.org/10.1145/3178487.3178493
http://doi.acm.org/10.1145/3178487.3178493
http://arxiv.org/abs/1807.04188
http://arxiv.org/abs/1807.04188
http://doi.acm.org/10.1145/3211346.3211348
http://doi.acm.org/10.1145/3211346.3211348
http://arxiv.org/abs/1802.04730
http://arxiv.org/abs/1802.04730

neural networks. CoRR, abs/1805.00907, 2018. URL
http://arxiv.org/abs/1805.00907.

[66] Chris Lattner and Jacques Pienaar. Mlir primer: A com-
piler infrastructure for the end of moore’s law, 2019.

[67] E. Del Sozzo, R. Baghdadi, S. Amarasinghe, and M. D.
Santambrogio. A unified backend for targeting fpgas
from dsls. In 2018 IEEE 29th International Conference
on Application-specific Systems, Architectures and Pro-
cessors (ASAP), pages 1–8, July 2018. doi: 10.1109/
ASAP.2018.8445108.

[68] Eric Chung, Jeremy Fowers, Kalin Ovtcharov, , Adrian
Caulfield, Todd Massengill, Ming Liu, Mahdi Ghandi,
Daniel Lo, Steve Reinhardt, Shlomi Alkalay, Hari
Angepat, Derek Chiou, Alessandro Forin, Doug Burger,
Lisa Woods, Gabriel Weisz, Michael Haselman, and
Dan Zhang. Serving dnns in real time at datacenter
scale with project brainwave. IEEE Micro, 38:8–20,
March 2018. URL https://www.microsoft.com/en-us/
research/publication/serving-dnns-real-time-datacenter-
scale-project-brainwave/.

[69] Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael,
Todd Massengill, Ming Liu, Daniel Lo, Shlomi Alkalay,
Michael Haselman, Logan Adams, Mahdi Ghandi,
Stephen Heil, Prerak Patel, Adam Sapek, Gabriel Weisz,
Lisa Woods, Sitaram Lanka, Steve Reinhardt, Adrian
Caulfield, Eric Chung, and Doug Burger. A configurable

cloud-scale dnn processor for real-time ai. ACM, June
2018. URL https://www.microsoft.com/en-us/research/
publication/a-configurable-cloud-scale-dnn-processor-
for-real-time-ai/.

[70] B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee,
S. K. Lee, J. M. Hernández-Lobato, G. Wei, and
D. Brooks. Minerva: Enabling low-power, highly-
accurate deep neural network accelerators. In 2016
ACM/IEEE 43rd Annual International Symposium on
Computer Architecture (ISCA), pages 267–278, 2016.
doi: 10.1109/ISCA.2016.32.

[71] Byung Hoon Ahn, Prannoy Pilligundla, and Hadi Es-
maeilzadeh. Chameleon: Adaptive code optimization for
expedited deep neural network compilation. In ICLR,
2020.

[72] Byung Hoon Ahn, Jinwon Lee, Jamie Menjay Lin, Hsin-
Pai Cheng, Jilei Hou, and Hadi Esmaeilzadeh. Ordering
chaos: Memory-aware scheduling of irregularly wired
neural networks for edge devices. In MLSys, 2020.

[73] Yakun Sophia Shao, Brandon Reagen, Gu-Yeon Wei, and
David Brooks. Aladdin: A pre-rtl, power-performance
accelerator simulator enabling large design space ex-
ploration of customized architectures. pages 97–108,
06 2014. ISBN 978-1-4799-4394-4. doi: 10.1109/
ISCA.2014.6853196.

http://arxiv.org/abs/1805.00907
https://www.microsoft.com/en-us/research/publication/serving-dnns-real-time-datacenter-scale-project-brainwave/
https://www.microsoft.com/en-us/research/publication/serving-dnns-real-time-datacenter-scale-project-brainwave/
https://www.microsoft.com/en-us/research/publication/serving-dnns-real-time-datacenter-scale-project-brainwave/
https://www.microsoft.com/en-us/research/publication/a-configurable-cloud-scale-dnn-processor-for-real-time-ai/
https://www.microsoft.com/en-us/research/publication/a-configurable-cloud-scale-dnn-processor-for-real-time-ai/
https://www.microsoft.com/en-us/research/publication/a-configurable-cloud-scale-dnn-processor-for-real-time-ai/

	Introduction
	PMLang: Mathematical Programming Interface
	Components
	Index Variables
	Mathematical Operations
	Domain Annotations

	Simultaneous-Recursive DataFlow Graph
	srDFG Definitions
	srDFG Semantics
	Enabling Different Accelerators

	Compilation Framework
	srDFG Generation
	Example srDFG Passes
	Compilation from srDFG to Accelerator IR

	Evaluation
	Experimental Setup
	Algorithms and Datasets.
	Optimized CPU and GPU implementations.
	Domain-Specific accelerators.

	Experimental Results
	Performance and Energy Comparisons
	End-to-End Application Case Study
	User Study

	Related Work
	Conclusion
	Acknowledgments

